Search results for "Cannabinoid receptor type 2"
showing 10 items of 19 documents
Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells.
2007
The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher…
Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation
2018
Objective— Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N -acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results— First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N -acyl phosphatidylethanolamine phospholipase D expression …
Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy.
2014
This study aimed at providing an insight on the possible role of cannabi-noid (CB) type 2 receptors (CB2R) and cGMP pathway in the antiepileptic activity ofWIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone, a non-selective CB agonist, in the maximal dentate activation (MDA) model of partial epilepsy in adult male rats. We evaluated the activity of a CB2 antagonist/inverse agonist AM630, [6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone or 6-iodopravadoline, alone or in co-administration with WIN 55,212-2. Also, in the MDA model it was investigated the co-treatment of WIN55,212…
Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations.
2007
Abstract While most of the studies concerning the role of cannabinoids on gastric motility have focused the attention on the gastric emptying in in vivo animal models, there is little information about the cannabinoid peripheral influence in the stomach. In addition, the functional features of CB2 receptors in the gastrointestinal tract have been poorly characterized. The purpose of the present study was to investigate the effects of cannabinoid drugs on the excitatory cholinergic and inhibitory non-adrenergic non-cholinergic (NANC) neurotransmission in mouse isolated gastric preparations. Intraluminal pressure from isolated whole stomach was recorded and mechanical responses induced by ele…
WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model…
2009
Parkinson's disease (PD) is characterized by the progressive loss of nigrostriatal dopamine neurons leading to motor disturbances and cognitive impairment. Current pharmacotherapies relieve PD symptoms temporarily but fail to prevent or slow down the disease progression. In this study, we investigated the molecular mechanisms by which the non-selective cannabinoid receptor agonist WIN55,212-2 (WIN) protects mouse nigrostriatal neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity and neuroinflammation. Stereological analyses showed that chronic treatment with WIN (4 mg/kg, intraperitoneal), initiated 24 h after MPTP administration, protected against MPTP-ind…
A runner’s high depends on cannabinoid receptors in mice
2015
Exercise is rewarding, and long-distance runners have described a runner's high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of pe…
A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents
2010
BACKGROUND AND PURPOSE Cannabinoid CB1 receptor antagonists reduce food intake and body weight, but clinical use in humans is limited by effects on the CNS. We have evaluated a novel cannabinoid antagonist (AM6545) designed to have limited CNS penetration, to see if it would inhibit food intake in rodents, without aversive effects. EXPERIMENTAL APPROACH Cannabinoid receptor binding studies, cAMP assays, brain penetration studies and gastrointestinal motility studies were carried out to assess the activity profile of AM6545. The potential for AM6545 to induce malaise in rats and the actions of AM6545 on food intake and body weight were also investigated. KEY RESULTS AM6545 binds to CB1 recep…
Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the a…
2015
Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of his…
Neurobiology of cannabinoid receptor signaling .
2020
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CBEl sistema endocannabinoide (SEC) apareció como un sistema de señalización muy versátil en el sistema nervioso. A pesar de su existencia amplia y ubicua, sus funciones están integradas en el contexto de distintos procesos neuronales y, en última instancia, son bastante bien discernibles y específicas. Esto es n…
The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance
2005
During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expr…